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Solvable Isotherms for a Two-Component System 
of Charged Rods on a Line 
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The Coulomb system consisting of an equal number of positive and negative 
charged rods confined to a one-dimensional lattice is studied. The grand par- 
tition function can be calculated exactly at two values of the coupling constant 
F = - q2/k B T (q denoting the magnitude of the charges). The exact results lead to 
the conjecture that in the complex scaled fugacity plane 3, all the zeros of the 
grand partition function lie on the negative real axis for F < 2 ,  on the point 
( = - 1  for F =  2, and on the unit circle for F >  2. In addition, for F >  4, we con- 
jecture in general and prove at F = 4  that the zeros pinch the real axis in the 
thermodynamic limit, with an essential singularity in the pressure at the reduced 
density 1/2. 

KEY WORDS:  Random matrices; quantum Brownian motion; partition 
function zeros; phase transition. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In 1962 Dyson (1-3) defined three types of ensembles of random matrices: 
orthogonal, unitary, and symplectic. These matrix ensembles were used to 
formulate a statistical theory of energy levels in complex nuclei and, sub- 
sequently, small metal particles. (4) The physical observables of the theory 
can be expressed in terms of the probability density function of the eigen- 
values, which, since the matrices are unitary, lie on the unit circle in the 
complex plane. 

The probability of finding the eigenvalues e ioj within the intervals ~bj 
[Oj, Oj + dOj], j = 1,..., N, is given by 

P ~ ) ( O  1 ..... ON) ( ] 0 1 . . . d O  N (1.1) 
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where 

p ( 1 )  (~(1) ~I lee~176 r (1.2) 
N F  ~ ~ N F  

l < ~ j < . k < ~ N  

Here F =  1 for the orthogonal, F = 2  for the unitary, and F = 4  for the 
symplectic ensemble, wUFt'(1) is a constant fixed by normalization. 

It was immediately observed by Dyson that P u t  is identical (up to a 
normalization constant) to the Boltzmann factor for the one-component 
log-gas on a circle. This is a classical Coulomb system of N mobile particles 
of charge q ~ = q  confined to a circle of radius R. With 01, 02,...,0N 
specifying the positions of the particles, the interaction potential is the two- 
dimensional Coulomb potential corresponding to charged rods 

V(Oj, G )  = - q j q k  l o g [ ( R / L )  le '~ - e'~ ] (1.3) 

Here L is an arbitrary length scale, which we take to equal unity. Also 
present is a neutralizing background charge density, which is necessary to 
obtain thermodynamic stability. Since the background only contributes a 
constant to the Hamiltonian, we see immediately from (1.3) that (1.2) 
corresponds to the Boltzmann factor for this system if we take 

F = qa/k B T (1.4) 

A third physical interpretation of the probability density (1,2) is as the 
ground-state wave function of an N-body SchrSdinger equation. Let us 
write 

(0o) a (1.5) 

It was observed by Sutherland ~5) that 0o is the ground-state wave function 
of the SchrSdinger equation with Hamiltonian 

--j~l 02 g7c2 1 (1.6) 
H = ~ q L 2 2 sin 2 7r(xk -- x j ) / L  

= l < ~ j < k < ~ N  

with xg = LOk/2n. [Note that in the limit L ~ oo the potential becomes 
V(r)  = g/r2.] The wave function is subject to periodic boundary conditions, 
and is defined to be positive in the region O<<.x~ <~x2 . . .  <-GXN << . L,  the 
choice of 0o in other regions depending on the particle type-boson or 
fermion. The coupling constants F and g are related by the equation 

F =  1 + (1 + 2g) ~/2, g~> -1 /2  (1.7) 
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The probability density (1.2) at F =  1, 2, and 4 has a remarkable 
solvability property: the n-particle distributions, which are defined in terms 
of the integrals 

N r'2zt 

l_~p j0 dOlPur ,  l<<.p<<.U (1.8) 

can all be calculated in closed form. (6) In principle, these distributions can 
be observed directly from the energy level dataJ 7) It is our purpose to study 
three further probability densities which share solvability properties com- 
parable with (1.2). 

These probability densities have 2N variables and are defined by 

p(2) = C(N2)F iA N(eiOl,..., eiON; eir ..... ei4u)lr (1.9) NF 

where 

AN(Xl  ..... XN; Y l , " ' ,  YN) 

= 1-1 (x~ - x j ) (y~  - yj)  ( x j -  y , )  (1.10) 
l<~j<k<~N k = l  

and again the solvability properties are special to the couplings F =  1, 2, 
and 4. This expression diverges if 0j = ~b~ for any j, ~ = 1, 2,..., N, so we must 
impose a short-distance cutoff to prevent this from happening. To accom- 
plish this and obtain the solvability properties, it is necessary to define the 
0j and ~b~ on interpenetrating sublattices. 

The most obvious interpretation of (1.9) is as the Boltzmann factor of 
a Coulomb gas of positive and negative charged rods confined to a circle. 
This is a two-parameter system, characterized by the coupling F [given 
by (1.4)] and the quantity pz, which is the ratio of the short-range cutoff T 
to the average interparticle spacing l ip.  In the thermodynamic limit the 
solvability properties at F =  2 for all values of pz have been obtained by 
Gaudin.(8,9) 

If the charges are arranged so that they alternate in sign around the 
circle, that is, 

0 ~ < 0 1 < r  <0N<~bu~<27r (1.11) 

the probability density (1.9) offers further physical interpretations. Such a 
system first arose in studies of the Kondo problem. (1~ In a mapping 
valid in the low-density, pr ~ 0 limit, the pressure and dipole moment of 
the Coulomb gas were related to the ground-state energy and susceptibility, 
respectively, of the Kondo problem. Furthermore, the length of the circle 
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N = 0  

where 

containing the charges is inversely related to the temperature in the Kondo 
problem, so the thermodynamic limit of the Coulomb gas reproduces the 
zero-temperature properties of the Kondo problem. More recently, (12) the 
probability density (1.9) with the ordering (1.10) has arisen in work on 
two-state quantum systems. 

In a previous study (13) we showed that for the probability density (1.9) 
at F =  1, for all p3, the integrals of the form (1.8) representing the grand 
partition function and two- and three-particle correlations can be 
calculated exactly, provided we adopt the ordering (1.11). Here we will 
exhibit the same solvability properties of the probability density (1.9) at 
F = 2  and 4 without any ordering restriction on the charges. Like the 
system with the charges constrained to alternate in sign, the unrestricted 
system also has a quantum mechanical analogue. (14) Consider the motion 
of a quantum mechanical particle in the presence of a periodic potential 
with frictional forces proportional to the particle's velocity, which couple to 
the environment. Using the Feynman path integral in "imaginary" time, we 
can integrate out the coordinates of the environment and we are left with 
the effective action Se~ = So + Sint, where 

1 (q__ q,]2 
\ 3 - - 3  / 

(1.12) 

Here q~ denotes the particle's coordinate. With the potential chosen as 

V(q~) = - g  cos q~ (1.13) 

the generating functional Z for the system can be written as 

/ = 1  l <~ i.< j <~ 2 N  

1 for 1 <.j<~N 
qj= 

- 1  for N + I < ~ j < ~ 2 N  
(1.15) 

U(r)={-[1/(2~l)]r, r ~ l  
(1/~r/) log r, r~> 1 

and C is a constant. 
For small g, when the short-range behavior of the potential U is 

unimportant, (1.14) is the grand partition function of the two-component 
system of charged rods on a line. 
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At high temperature a system of oppositely charged rods exists in a 
conducting phase, which means that the charges are free to respond to and 
screen an external charge density in the long-wavelength limit. At low tem- 
peratures the oppositely charged rods form dipoles, so the system is polar 
and thus in an insulating state. On the basis of some approximate 
analysis, (15'16) it has been conjectured that the transition temperature, for 
small values of pr at least, occurs at F =  2 with an insulating phase for 
F >  2 and a conducting phase for F <  2. In the quantum analogue noted 
above, insulating and conducting phases correspond to a localized and 
mobile phase, respectively. The conjectured phase diagram (17-19) has the 
properties noted above of the charged-rod phase diagram. 

Our exact results are consistent with these predictions for the phase 
diagram, and furthermore strongly suggest a remarkable mathematical 
mechanism for the transition. 

Consider the finite system defined on two interpenetrating sublattices 
of M sites with periodic boundary conditions. We conjecture that the zeros 
of the grand partition function all lie on the negative real axis for F < 2, on 
the point 4= -1  [4 denotes the scaled fugacity; see (4.1)] for F = 2  (the 
perfect-gas result for a lattice with M sites], which we prove, and on the 
unit circle in the complex ~ plane for F > 2 ,  which we prove at F = 4 .  
Furthermore, for F >  2, we conjecture that the zeros pinch the real axis in 
the thermodynamic limit, with an essential singularity in the pressure at the 
reduced density pr = 1/2. 

Let us proceed to detail the exact calculations at F =  2 and 4. We 
begin with F =  2, for which the calculation is quite straightforward. 

2. THE  G R A N D  P A R T I T I O N  F U N C T I O N  AT I ' = 2  

As remarked in the Introduction, for the purposes of a short-range 
cutoff and the solvability property, it is necessary to define the system on a 
lattice. 

Divide a line of length L into M intervals so that there are sites at the 
points n L / M ,  n = 1, 2 ..... M .  Introduce an interlacing lattice at the points 
( n -  1 ) L / M ,  n = 1, 2,..., M .  Denote these lattices ~1 and 2'2, respectively. 
Allow N (~< M) positive charges to occupy LP~, and N negative charges to 
occupy 5q 2. Impose periodic boundary conditions, so that the pair potential 
is 

V(01, 02) = - q l  q2 log[ le 2'~~ - e 2~i02/L ] (L/2r~)] (2.1) 

(this is equivalent to defining the system on a circle of circumference L). 
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Denote the coordinates of the positive charges by mkL/M and the 
coordinates of the negative charges by (lk-�89 where mk, lk= 1, 
2,..., M. Further, denote 

Wk ~- e2~imUM, Zk = e2~i~tk - ~/2)/M (2.2) 

With this notation, the Boltzmann factor of the system for general F 
[recall (1.4)3 is 

mur= (2g/L) ur ] A N ( W I , . . .  , W N ;  Z 1 . . . . .  Z N ) [  F (2.3) 

where A N is given by (1.10). 
This is the probability density (1.9) after suitable choice of nor- 

malization and 0 and ~b. 
The partition function Z N F  is given by 

M M 

Z N I  ~ = E E W N d ( N !  )2 ( 2 . 4 )  

m 1,..., m N = 1 l 1,..., l N = 1 

and the grand partition function is given by 

M 

Z r =  • ~2NZNr (2.5) 
N - - O  

where ~ denotes the activity. We will now transform (2.3)-(2.5) into 
manageable forms for F =  2. 

Using the Cauchy double alternant determinant formula (2~ 

det[w~--Zklj ,  k=l,...,N =(--1)N(N--1) /2AN(WI, . . . ,WN;ZI , . . . ,ZN)  (2.6) 

with A N given by (1.10), we have 

WN2 = (2~/L) 2N Idet[-(wj--zk) 1]]2 (2.7) 

If we introduce a parameter #, L/~I ~< 1, as a factor of zk in each term of the 
determinant, they can each be Taylor-expanded, and after familiar 
manipulation (2x'22) we obtain 

N! N! 

WN2 = (2~/L) 2N '~, Z e(P) e(Q) 
P = I Q = I  

x lim ~J+& 
, u ~ l  0 ~.~ ~1 ..., ~N O ~ f l l , . . . , ~ N k j =  1 / 

• exp[ --2ni(lk -- �89 [3Q~k))/M] exp [2rtirnk(c~k -- [3k)/M] 

(2.8) 
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Writing 

c~j=~,j+kjM, 0 ~ < T j ~ < M - 1 ,  k j = 0 ,  1, 2 .... 
(2.9) 

flj=vj+ljM, 0 ~ < v j ~ < M - l ,  b = 0 , 1 , 2  .... 

it is s traightforward to take the limit # ~ 1 -  and we obtain 

N! N] M -  1 M -  ! 

WNZ = (zc/L) 2N Z ~, e(P) e(Q) Z Z 
P = I  Q = I  0 ~ < y l , . . . , y  N O~Vl,...,v N 

N 

• [ I  exp[--27zi(l~ - ~  7 -- 3)(e<k) VQ<k))/M] exp[2rrimk(yk-- Vk)/M] 
k - 1  

(2.10) 

Substituting (2.10) in (2.4), we see that  we have an expression of the form 

N! N]  N 

Z Z e(P) e(Q) ~I ae~,).Q~t) (2.11) 
P = I  Q - 1  l = t  

which we recognize as (2~ 

N! Det[aj ,  k]j,k= 1,..., N (2.12) 

Thus 

1 (L)2N M--1 M--1 (I~= ~ 27rim(Tk'--vk)) 
= 2 Y, exp 

Z N 2  -~" 0 ~ < y l , . . . , y N  O~vl,...,v N 1 m = l  m 

[ 1 x Det  t ~  exp M ~j-,~ ~ 1,..., N 

Consider  the expression (2.13). The sum over m gives 

Mfiyk, ~k (2.14) 

so we can replace v k by 7k in the sum over 1 and ignore the sums over the 
v k. Observe that  if Yk = Ye, for k r k',  then two rows of the determinant  are 
identical, so we can restrict Yk r Yk'. Fur thermore,  the summand  is sym- 
metric in the 7k, so we can adopt  the ordering 

0 ~ ) l < Y 2 <  " ' '  < T N ~ < M - -  1 (2.15) 

provided we multiply by N!.  Since lTk - 7k'] < M, the only non-zero term in 
the determinant  is the diagonal.  We thus obtain 

IN2 = ( Mzc/L ) 2N ~ 1 
0 ~ y l  <:y2 < --- - < y N ~ M - -  1 

= coefficient of~ 2N in the expansion of  [1 - (=M~/L)2] M (2.16) 
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From (2.5), the product in (2.16) is the grand canonical partition 
function. Defining the scaled fugacity at F =  2 by 

= (r~M~/L) 2 (2.17) 

we thus, remarkably, have the perfect-gas result for M particles on a lattice 
of M sites, 

~2 = (1 + ~)M (2.18) 

3. THE G R A N D  PARTIT ION FUNCTION AT I ' = 4  

The calculation in this case requires techniques beyond those 
necessary at F =  2. Here we draw on past experience ~23'13) and familiarity 
with the calculation of r~(1) in (1.2) as given by Dyson and Mehta. (24'25) ~ N 4  

3.1. A Conf luent  Cauchy Double A l te rnant  

Our first objective is to express the Boltzmann factor (2.3) at F =  4 as 
a special type of determinant. To do this, consider the Cauchy double 
alternant formula (2.6) with determinant size 2N, 

(--1)NA2N(Xl'""X2N;Yl'"" Y2N) = det I x @ -  Yjl k,j=l,2,...,2N (3.1) 

We will have us for a confluent form of (3.1). 
Suppose we take the limits 

X j + N ~ X j ,  Y j + u ~ Y j ,  j = l , 2  ..... N (3.2) 

It is easy to see that the leading order behavior of the left-hand side of (3.1) 
is 

] ( X j + N - - X j ) ( y j + N - - y j )  EAN(x, ..... X N ; y l  ..... YN)] 4 (3.3) 
1 

On the right-hand side of (3.1), interchange the rows of the determinant so 
that the ( 2 j -  1)th row contains the xj and the 2jth row contains the xN+ j. 
Then interchange the columns so that the ( 2 j -  1)th column contains the yj 
and the 2jth column contains the YN+j.  Since the number of such 
interchanges is even, the value of the determinant is unchanged. 

The ( 2 j -  1 )th and (2j)th rows are then 

1 1 1 1 
(3.4) 

xj- -y lx j - -YN+I xj--yNxj--Y2N 
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and 

1 1 1 1 

XN+ f - -  Yl X N + j  - -  YN+ 1 X N + j -  YN XN+j  -- Y2N 
(3.5) 

respectively. If we subtract (3.4) from (3.5) for each j and take the first of 
the limits in (3.2), to leading order the right-hand side of (3.1) has a factor 
of 

N 

[I (&-- XN+,) (3.6) 
l = 1  

and the (2j)th row becomes 

1 1 1 1 

(Xj -- y l )  2 (Xj -- YN+ 1) 2 .  (Xj -- yN)  2 (Xj - -  Y2N)  2 (3.7) 

The (2 j -  1)th and (2j)th columns are now 

1 1 1 1 
(3.8) 

X 1  - -  y j '  ( X  1 _ y j ) 2  . . . . .  X N  __ y j  ( X  N _ yj)2 

and 

1 1 1 1 

X I - - Y N + j  ( x I - - Y N + j )  XN Y N + j  ( X N - - Y N + j )  2 
(3.9) 

respectively. If we subtract (3.8) from (3.9) for each j and take the second 
of the limits in (3.2), to leading order the right-hand side of (3.1) has, as 
well as (3.6), a factor of 

N 

[-I (YN+,-- Y,) (3.10) 
l = l  

and the (2j)th column becomes 

1 2 1 2 

(X 1 - -  y j )2 '  (X 1 __ yj)3 .... ' (X N -  y j )2 '  (X N -  yj)3 
(3.11) 

Canceling the factors (3.6) and (3.10) with the corresponding terms in 
(3.3) and reading off from (3.8) and (3.11) the columns of the determinant, 
we have thus derived, by taking the limits (3.2) in (3.1), the identity 
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D4=- [ A N ( X I  ..... XN; Y l , ' " ,  YN)] 4 

1 1 1 1 

x l - -  y 1 ( X l - -  y l )  2 X l - -  y 2 ( x l -  y2) 2 

1 2 1 2 

( X l - - Y l )  2 

x 1 

X 2 - -  X 1 

1 

(x2 - y l )  2 

( X  1 - -  y l )  3 ( X  1 - -  y2) 2 (Xl -- y2) 3 

1 1 1 

(x2 - yl)  2 X2 -- Y2 ( X 2  - -  Y 2 )  2 

2 1 2 

( x 2 -  y l )  3 (x2 - y2) 2 (x2 - y2) 3 

(3.12) 

2 N  x 2 N  

Suppose all the x~ and Yk have modulus one. Then, analogous to the 
work that led to (2.8), we can Taylor-expand each term in the determinant, 
provided we introduce a parameter/~, I/~] < 1, by replacing each Yk by #Yk. 
Using the elementary formulas 

(1 - t) 1 = ~ t ~ 
k = O  

( l - t )  2= ~ ( k + l ) t  k (3.13) 
k = 0  

2 ( l - t )  3 =  ~ ( k + 2 ) ( k + l ) t  ~ 
k = 0  

we can expand each term in (3.12) column by column to obtain 

D 4= X/-3 lira [-I (#Yt) ~2'+~2'-1 
l / z ~ l  ~1 ,..., C~2N = 0 / = 1  

(~1 x1r (c% + 1 ) xi -1 -~'2 xi -~'~ 

+ 1 ) X l  ~̀1 (~2+2)(or  -~-~'~ ( ~ 3 + 1 ) x {  ~'~ 
X 

X 2  ~l ((~2 + 1) x~ 1 ~2 x ~ 3  

, . o  

. ~ 1 7 6  

2 N  x 2 N  

(3 .14)  

From the (2j)th column of the determinant in (3.14) a common factor 
of (cr 1) can be extracted for each j =  1, 2,..., N. Now replace c% by 
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~2j-1 .  Then the summation over ~2j must begin from c~2j= 1. But since 
there is a factor of c~2j in the summand, the ~2j = 0 term can be included in 
the sum. Doing this for each j =  1, 2 ..... N, we thus have from (3.14) 

o4t  x ;  3) 
X l  cq 

(cq + 1) xi ~ 

X 2  ~1 

N 

lim ~ l-I (,uY,) ~'2' +~,-1%, 
, u ~ l  ~1,..., ~2N = 0 l = 1  

ii (0~2 -'['- 1 ) X 1- ~2 (~3 + 1) Xl~3 "'" (3.15) 

x~- ~2 x~ ~3 . 

2N x 2N 

Let us relate this to the Boltzmann factor (2.3) at F =  4. With 

xk = % ,  Yk = zk (3.16) 

where w~ and z~ are defined by (2.2), we can easily show that 

W N 4  = (2g/L) 4u (wjzj) 2 [AN(W 1,..., W N ;  Z1,. . .  , Z N ) ]  4 ( 3 . 1 7 )  

Hence, by the definition in (3.12) and the identity (3.15), the Boltzmann 
factor can be written in terms of the right-hand side of (3.15) with the 
replacements (3.16). 

Now, as in (2.9), write the summation in (3.15) as 

c~j = 7j + kjM, 0~<7j~<M- 1, k j = 0 ,  1,2 .... (3.18) 

The summation over the k i can be performed column by column (the j t h  
column depends on kj only). Since 

oo 

lim ~ (-#)k(v+l+kM)=�89 (3.19) 
, u ~ l -  k =  0 

lim ~ (-ke)k(7+kM)(7+kM+l)=�89 (3.20) 
# ~ 1 -  k = 0  

where 

al(7) = 7 + 1 -M/2, a2(7) = ~2 + (1 -M)7-M/2 (3.21) 
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we have from (3.15) and (3.17)-(3.21) the identity 

M 1 N 
W N 4 = 2  2N(27c/L)4N ~ H ~r 

yl, y2,..., T2N ~ 0 k = l  

w? ~ [ a1 (7~ ) -  1] w{ ~z w{ 7~ 

a1(71) Wl yl a2(y2) w l  z'2 al('Y3) Wle3 

W~ -~1 [ a l ( ] ) 2 ) -  1] w~2  w2Y3 
(3.22) 

Note  that  if 72j = 72j, or 72j- ~ = ~2j,- 1 for any j # j ' ,  the determinant  
vanishes, so we can take 

72j#72j, and 7 2 j - l C ~ 2 f - 1  fo r a l l  j # j '  (3.23) 
Now define 

1, k odd (3.24) 
x ( k ) =  2, k e v e n  

Then, we can use the definition of a determinant  as a sum over per- 
mutat ions  to write (3.22) in the form 

N 
WN4=2 2N(z~C/L)4NZ H Z~2k-t+Y2k+lwkl 

y k ~ l  

(2N)[ N 

• ~ e(P) H w; ''2k-1' 'P(2k)az(p(2~))(Ve(2k)) 
P = l  k = l  

• [al(yp(2k- ~)) - 1 ]zp(~k-l)- 1 (3.25) 

where y denotes the range 

0 ~< 71, y2,..., T2N ~< M - -  1, 72j 5L 72j,, ])2j_ 1 ~ ~)2j, 1 (3.26) 

We obtain our  final working identity by restricting the permutat ions  
to the class X, where 

X =  {P: P(2/)  > P(2l -  1) each l =  1, 2,..., N} (3.27) 

Then, from (3.25), 
N 

WN4 = 2-2N(Zx/L) 4N E H 2~ 2k+~2k-~ +1 
yk=l 

N 
• E e(P) H WkW(2k-'--~(:k)--l{az(e(2k))(Te(Zk)) 

X k--1 

X [ a l ( y e ( 2 k _ l )  ) -  13 ze(2k-') I 

- ax(e(2k- ~))(Yz,(2~- m))[a~(Tp(2k)) - 1 ] x~(:~)- 1 ) (3.28) 

2N x 2N 
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where WN4 is given by (2.3); w~ and z~ by (2.2); a~ and a 2 by (3.21);)( by 
(3.24); 3' by (3.26); and X by (3.27). 

3.2. The Partition Function 

To evaluate ZN4 a s  defined by (2.4), we first substitute (3.28). The sum 
over the lk in (2.4) can now be done immediately. From the definition (2.2) 
of zk, and since, from (3.26), 0 ~< 7k ~< M -  1, we have 

M N N 

E ~I ZYk 2k-l-72k-ltcl=(-m)N U ~72kWT2k I, M-1 
II,...,IN=I k = l  k = l  

(3.29) 

where 6,.b denotes the Kronecker delta. 
Now consider the sum over the m k in (2.4). By considering the con- 

ditions (3.26) and the delta functions in (3.29), we see that there are two 
classes of nonzero contributions: 

Type 1 P(2/) = 2r 
P ( 2 l -  1)= 2 r -  1 (3.30) 

Type 2 P(2/) = 2r, P(21') = 2 r -  1 
(3.31) 

P(21-  1 ) = 2r', P(2l' - 1) = 2 / -  1 

To compute the sum over the m~ we first consider the contribution from N 
type 1 permutations, and then introduce in order 1, 2,..., IN/2] (in this 
context [ - ]  denotes integer part) type 2 permutations. Let us call the 
contribution to (2.5) from k type 2 permutations S~, so that 

For So we can have 

ZN, 4 = ~  Z Sk (3.32) 
k = O  

P(2/) = 2Q(1) 

P ( 2 l -  1)= 2 Q ( / ) -  1, Q(l) e {1, 2 ..... N} 

which has e(P)= 1. ThUs, from (2.4), (3.28), (3.29), and (3.32) 

(3.33) 

where 

M 1 N! N! 

So= M u Z Z U A1(]J2Q(l') 
y2,~d, . . . ,72N=0 Q = I  / = 1  

Al(7) = az(7)- -a l (M--  1 --7)[a1(7)-- 13 

= 272 + 2(�89 -- M)7 + M2/4 -- M/2 

(3.34) 

(3.35) 

822/51/3-4-10 
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The summand in (3.34) is independent of the particular permutation, so we 
can choose Q(l) = l and multiply by N!. The summand is also symmetric in 
the 7's, so we can choose a particular ordering provided we multiply by N!. 
Thus, 

N 

So = MS(N ! )  2 ~ 1-I A,(72,) (3.36) 
0 ~ y 2 < Y 4 <  --- < Y 2 N ~ M - - 1  l = 1  

For general S,,,, from (3.30)-(3.32), we have 

P(21) = 2Q(l); Q(I) ~ {1, 2,.., N} - {rl, r2 ..... r2k) 
(3.37) 

P ( 2 1 - 1 ) = 2 Q ( 1 ) - I  for l r  ..... m2k 

and 

P(2m,)= 2rR(2, 1), 

P(2m, . -  1 ) = 2rm2t), 

P(2mt+k)= 2rm2t 1)-- 1 

P(2m, + k - 1 ) = 2rR(2,) - 1 
(3.38) 

where 

R(t)E {1, 2 ..... 2k}, t = 1, 2,..., k, l<~mt<~N 
(3.39) 

m t ~ m t ' ,  rR (2 t  1) > r R ( 2 t ) ,  r t ~ r t ,  

By considering the number of interchanges, we have that 

e(P) = ( -  1) ~ (3.40) 

All choices of ml ..... m2k give the same contribution to Sk, so we can 
choose mt = l provided we multiply by the number of such choices, which is 
N ! / ( N - 2 k ) ! .  Thus, from (2.4), (3.28), (3.32), and (3.37)-(3.40) 

N! M u (N 2k)! (2k)! M 1 

E E E E 
(N-- 2k)! Q=I R 1 rR(2t_l)>rR(2t)T2, T4,...,Y2N=O 

t =  1,2,..., k 72j~Y2j' 

• A 1 ( 7 2 Q ( l ) )  A2(72rzm) (~72r2m+72r2m_l, M--1 (3.41) 
l = i  1 

where A1(7) is given by (3.35) and 

Az(Y)= { a 2 ( 7 ) [ a l ( M -  1 - 7 ) -  1 ] - a 2 ( M -  1 - 7 )  

x [ a l ( 7 ) -  1 ]}{ [a l (M--  1 - 7 ) - a ~ ( 7 ) ] }  

= ( M -  1 - 27) 2 [72 + (1 -- M)7 - M/Z] (3.42) 
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In (2.59) we can choose 

N>>.rl>r2> . . .  >r2~/> 1 

provided we multiply by the factor 

( 2 k -  1 ) ( 2 k - 3 ) - . .  1 - 
(2k)! 
2 k k! 

(3.43) 

(3.44) 

Also, the summand in (3.41) is independent of the particular choice of Q, 
so we can choose Q(l) = l provided we multiply by ( N -  2k)!. Hence 

provided 

N [ M N  ( 2 k ) ! ( N ) ( N _ 2 k ) !  
S k = ( - 1 ) k ( N - 2 k ) !  2kk! 2k 

k M--1 

x E F[ A2(74,) Z tFI A,(T2,) 
7" / = 1  y** / = 2 k + l  

where ?* denotes the range 

0 ~ ~)4' ] ) 8 ' - "  ?4k ~<M-  1 

74j # 74s, M - -  1 -- 74y 

for any j #  j '  (j, j ' =  1, 2 ..... k) and 7"* denotes the range 

provided 

~ 4 k + 2 j S ~ 4 k + 2 j  ', 74j', M -  l -  yaf 

for any j # j '  (L J' = 1, 2 ..... N). 

(3.46) 

(3.47) 

(3.48) 

N) (3.45) 
1 =  2k 

N ~ r l >  ... >r2k>~ 1 

which is the number of ordered pairs (rR(1),rR(2)), (rR(3),rR(4)) ..... 
(rR(2k_ 1), rR(2k)) with the constraint (3.43) such that rR(zt l) > rR(2o for each 
t =  1, 2,..., k and R ( t ) e  {1, 2,..., 2k}. But the summand in (3.41) is indepen- 
dent of the particular choice of r's in (3.43), so we can choose rt = t 
provided we multiply by 
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Using the symmetry 

A2(y)= A 2 ( M -  1 - 7 )  (3.49) 

the condition (3.47), and the fact, which follows from (3.47) and (3.48), 
that for M odd, 74j:/: ( M -  1)/2 (Modd) ,  we have 

k I-M/2] -- 1 k 

1-1 A 2 ( 7 4 l )  = 2k  E l~ A 2 ( 7 4 l )  
y* l - 1  y4, y8,..., ?4k -- 0 l=1  

Y4jg:Y4y (J,J' = 1,..., k) 

= 2kk! X-~ (3.50) 

where 

k 

X~= Y' 1-I A2(74,) (3.51) 
0~<y4<yS< "" <Y4k<~[M/2] -1 / = 1  

Equation (3.51) follows by using the symmetry of the summand in (3.50) 
with respect to the 7's (74, 78,..., 74k) .  

The summand in (3.46) is also symmetric with respect to 74k+2, 
•4k+4 . . . . .  Y2N, SO if we define 

N 

r ,N= Z 1-I A1( 2,) 
o.<~4k+2 . . . .  <y2N-<a4 1 t=2k+l (3.52) 

74i,+2j=/=74j,,M-l--'Y4j,, j = l ,  2 ..... N - 2 k ;  j ' =  1, 2 ..... k 

and agree on the conventions 

Xo = 1, Yk, N = 0 for k > IN/2],  YN/2,N = 0 for N even (3.53) 

we have from (3.32), (3.46), and (3.50)-(3.53) the result 

(M)2N(2 .~)  4N[M/2]I 
ZN,4=(--1)  N ~ ( - -  1 )k  X k  Yk, N ( 3 . 5 4 )  

k=O 

3.3. The  Grand Par t i t ion  Funct ion  

From the definition (2.5), the evaluation (3.54), and the properties 
(3.53) we have 

M [M/2] )k 1 ) N  ~'2N ( - M ' ~  2N ( 2 ~ ' ~  4N 
"-'~4 = E (-- 1 X k ~ (-- Yk N ( 3 , 5 5 )  

,=o N=2k \ 2 J \ L,) ' 
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From (3.52), the sum over N in (3.55) is simply 

(_..~)4k (_~)8k {Ml~01 [1 -  (M__~)2 (~)4  AI(I)] } 

M{l~_l[1-(-M~)2(2-~)4Al(~24,)] 

XL \ 2 / kL /  AI(M-I-74I) (3.56) 

Substituting this result in (3.55) and using (3.51) gives us the evaluation 

l=0 
[M/2] 
lq k=O 

(M(/2) 4 (2x/L) 8 A2(k) ] 
1 ( [I-(M(/2)z(2~/L)4A'(k)] - k ) ] )  

x I1 -- (M~/2) 2 (2x/L) 4 AI(M- 1 

(3.57) 

The terms in (3.57) can be combined into the single product 

[M/2] -- 1 
~-"~4 = l~ {[1 - (M(/2) 2 (2~z/L) 4 Al(k)]  

k=O 
x [1 - (M(/2) 2 (2x/L) 4 Am(M- 1 - k)] - (M(/2) 4 (2~/L)8 A2(k)} 

1, Meven  (3.58) 
x {I_(M(/2)2(2rc/L)4AI[(M_I)/2]} ' M o d d  

Recalling the definitions of A~ and A 2 as given by (3.35) and (3.42), we 
have thus derived the result 

EM/2] -- 1 
34 = 1-I /=0 

M :  1 ] +  42} 4 [ 4 1 2 _ 4 l ( M _ 1  2 M +  1 - ~ - 5  ) + - - ~ - -  

1, M even 
x 1 + r M o d d  (3.59) 

where, in analogy to (2.17), we have defined the scaled fugacity at F =  4 by 

= (7rM/t)4 ~2 (3.60) 
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4. PROPERTIES OF THE EXACT SOLUTIONS 

4.1. Signi f icance of the Scaled Fugacity 

In (2.17) and (3.60) we defined a scaled fugacity ~, which can be sum- 
marized in the one equation 

= ( n M / L ) r (  2 (4.1) 

To understand the significance of this choice, first consider a general one- 
component lattice gas with an arbitrary two-body potential V in periodic 
boundary conditions. Let W, denote the Boltzmann factor of a con- 
figuration of n particles at positions Xl, "~2 . . . . .  X n. Let WM_, denote the 
Boltzmann factor of the same configuration, but with the holes and 
particles interchanged (M denotes the number of lattice sites), and denote 

' ' x' Then the positions of the particles by x ~ ,  x2, . . . ,  M - , .  

where 

enfleo W ,  = e ( M -  n) flEo W M  (4.2) 

The sum is over all lattice sites k # k'. Note that, by the assumption of V 
being periodic, Eo is independent of k'. To see this, simply multiply both 
sides of (4.2) by 

M // 

FI l~ exp[-flV(Ixk-x}l)] (4.4) 
k = l  j = l  

Then, from the definition (4.3), (4.2) is evident. By the same argument, the 
relationship (4.2) holds for two-component charged systems, provided each 
species of charge is restricted to a particular sublattice. 

From (4.2) we have the relationship between partition functions 

en~E~ = e( M -  ~) I~e~ M -  n (4.5) 

Hence, the grand partition function can be written 

M 

~ =  ~ ,r (4.6) 
n = O  

where 

= e-~e~ (4.7) 

Eo = Y' V ( I x k - - x k , I  ) (4.3) 
k # k '  
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(~ = e-BE~ 2 for two-componen t  charged systems) and  

Z *  = e ~ ~  (4.8) 

Since Z *  - Z *  the grand par t i t ion function is reciprocal  in the variable 
n - -  M - - n ~  

~, so that  if ~o is a zero of ~, so is 1/~o. 
Fo r  the two-componen t  charged- rod  system under  considera t ion here, 

with the potent ial  (2.1), the formula  (4.3) gives 

M 1 M 

Eo/q 2 = l o g ( L / 2 7 r ) - l o g  I~  l1 - e2~i"/MI + log I~ I1 - e 2ni(n I/2)/M[ (4.9) 
n = l  n = l  

F r o m  the identity 

M 

1-[ (x--e2~im/Ma) = x M - a M  (4.10) 
m = 1  

with the m = M term taken to the left-hand side, by taking a = 1 and the 
limit x ~ 1, we obta in  

M - - I  

l~  ]l--e2~'m/M] = M (4.11) 
m = l  

while a = e -~i/M and x = 1 in (4.10) gives 

M 

1-I l1 - e 2=i/~ 1/2~/MI = 2 (4.12) 
m = l  

Hence 

Eo/q 2 = log(L/Mrc) (4.13) 

and so f rom (4.7) the scaled fugacity is given by (4.1). 

4.2. The  Zeros of  t h e  G r a n d  P a r t i t i o n  Func t ion  

We are interested in the locat ion of the zeros of the grand par t i t ion 
function for a par t icular  value of M (the number  of lattice sites on each 
sublatt ice) as a funct ion of the scaled fugacity (4.1). 

At F =  2, f rom (2.18) we see that  the M zeros all occur  at the point  

= - 1  (4.14) 
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M = 2 :  

M = 3 :  

M = 4 :  

where 

At F = 4 ,  from (3.59), the zeros lie at the zeros of the quadratic 

4 I M2 ] 4 2  4 1 2 - 4 1 ( M - 1 ) + - ~ - - Z M +  l + (4.15) 

for l = 0 ,  1, 2 ..... [M/2]  - 1, as well as at 4 = - 1  i f M i s  odd. These zeros all 
lie on the unit circle in the complex 4 plane. To see this, we note that it is 
equivalent to saying 

412-41(M-1)+- -~ - -2M+l  4 2  (4.16) 

for each / = 0 ,  1,2 ..... [ M / 2 ] - l .  Since the left-hand side of (4.16) is 
quadratic in l, it is simple to check this explicitly. 

For general F, it is straightforward to compute ~ r  for small values of 
M from (2.3)-(2.5). We have 

Zr= 1 + 2 2 1"/2 4 q- 4 2 (4.17a) 

s  r ( 2 r + l + l ) - l ] 4 + 4 2 }  (4.17b) 

2 r  = 1 + a4 + b~ 2 + a43 + 44 (4.17c) 

a = 8(2-3r/2)[(2 + x/2) r/= + (2 - x/2) r/= ] 
(4.18) 

b = 2 2r{ 16(2r/2) + 4(2 r) + 8(2-r/2)[(2 _ x /~) r  + (2 + x/2) r ]  } 

From (4.17a) and (4.17b) we can calculate immediately that the zeros of Z r  
all lie on the unit circle in the complex 4 plane for F > 2  and on the 
negative real axis for F <  2. To show that this is true in (4.17c), we note 
that we can write in this case 

where 

~ r = ( l + t + 4 + 4 2 ) ( l + t  4+42 ) (4.19) 

t_+ = l{a _ [a 2 - 4(b - 2)] 1/2 } (4.20) 

It is a simple exercise in quadratic equations to show that it t_+ are 
real, then the zeros of (4.19) all lie on the circle 141 = 1 if and only if 

2a ~< b + 2 (4.21) 
and 

a2/2 ~< b + 2 (4.22) 
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We can check from (4.18) that (4.21) and (4.22) hold for all F~>2, while 
(4.22) breaks down for F < 2 .  Under the latter circumstance, with (4.21) 
remaining valid, the zeros all lie on the negative real axis. 

The above results are all consistent with the conjecture announced in 
the Introduction: the M zeros of the polynomial ~ r  as a function of the 
scaled fugacity ~ all lie on the negative real axis for F <  2, and on the unit 
circle in the complex - r plane for F > 2. At F--= 2 the M zeros occur at the 
point ~ = -1 .  

4.3.  T h e  T h e r m o d y n a m i c  L i m i t  

In general, for a one-dimensional system of length L, the pressure is 
given in terms of the grand partition function by 

1 
/~P,= l i f n  ~ l o g ~  (4.23) 

and the density is given by 

Hence, from (2.18), at F = 2  

where 

p = ~ ~?flP/O{ (4.24) 

/3P = _1 log(1 + 4) (4.25) 

(4.26) P + = P -  ~(1+~) 

= L / M  (4.27) 

is the lattice spacing on each sublattice and p + ( p )  refers to the particle 
density on the sublattice for the positive (negative) charges. From (4.25) 
and (4.26) the equation of state for a noninteracting lattice gas is 

/~P= log l + l _ p +  ~- (4.28) 

in agreement with Gaudin's result. ~g) 
From (3.59), and noting that the sum implied by the formula (4.23) is 

just an example of a Riemann integral, we have at F =  4 

~P = 1 ~1/2 dt log[ 1 - 4~(4t 2 - 4t + �89 + ~z] (4.29) 
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Changing variables 

we find that (4.29) becomes 

t = sin2(0/4) (4.30) 

lfo (;)  flP=~-~ dO sin l o g ( 1 - 2 ~ c o s 0 + 4 2 )  (4.31) 

and from (4.24) 

p + = p _ =  dO sin~ 1 - 2 4 c o s 0 + 4 2  (4.32) 

From (4.31) we read off that the density of zeros of the grand partition 
function on the unit circle at F =  4 is given by 

�88 sin(0/2) dO (4.33) 

Thus, the zeros cross the real axis at F = 4  in the thermodynamic limit 
(although with zero density), and thus, according to the Yang-Lee 
theory, (26) the system exhibits a phase transition as a function of density. 

The singularities at F =  4 and 4 = 1 are calculated by expanding the 
integrands in (4.31) and (4.32) near 0 = 0 .  We thus find for 4 ~  1 

and 

Hence, defining 

f l P " ~ l I 2 1 ~  (1-4)~21~ (4.34) 

1 1 
p+ ~ - ~  +~-~ (1 - 4)log I1 - 41 (4.35) 

flp~ = 1~ (2 log 2 - 1), Pc = 1 (4.36) 

we have 

1 - ~  
/~(P - P~) 2 (p + - pc) 

= - �89  + - Pc))(P + - Pc) (4.37) 

where f (x )  is the inverse function of x log x for small, positive x. Thus, as a 
function of density, the pressure exhibits an essential singularity at the 
critical point p + = 1/(2z). It would seem likely that this feature persists for 
all F >  2. 
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4.5. The Phase Diagram 

A proper discussion of the phase diagram, in the form of identifying 
the conducting and insulating regimes, requires the study of correlation 
functions. We defer this to a subsequent paper, in which we will calculate 
the two-particle correlations at F =  2 and 4 for all values of pr. 
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